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Notations

H, E , E∗ Hilbert spaces
B(E , E∗) The space of all bounded linear operators from E to E∗
B(E) The space of all bounded linear operators on E
Dn Open unit polydisc in Cn

H2(Dn) Hardy space on Dn

H2
E(Dn) E-valued Hardy space on Dn

H∞
B(E,E∗)

(Dn) Set of all B(E , E∗)-valued bounded analytic functions on Dn.

(Mz1 , . . . ,Mzn) n-tuple of multiplication operator by the coordinate
functions on H2(Dn)

(1) All Hilbert spaces are assumed to be over the complex numbers.
(2) For a closed subspace S of a Hilbert space H, we denote by PS the or-
thogonal projection of H onto S.
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(3) For nested closed subspaces M1 ⊆ M2 ⊆ H, the orthogonal projection

of M2 onto M1 is denoted by PM2

M1
.

1. Introduction

Tuples of commuting isometries on Hilbert spaces are cental objects of study
in (multivariable) operator theory. This paper is concerned with the study
of analytic representations, joint invariant subspaces and C∗-algebras of a
certain class of tuples of commuting isometries.

To be precise, let H be a Hilbert space, and let (V1, . . . , Vn) be an n-
tuple of commuting isometries on H. In what follows, we always assume that
n ≥ 2. Set

V =
n

Π
i=1

Vi.

We say that (V1, . . . , Vn) is a pure n-isometry if V is a unilateral shift. A
closed subspace S ⊆ H2(Dn) is said to be an invariant subspace of H2(Dn) if
MziS ⊆ S for all i = 1, . . . , n where Mzi is the multiplication operator by the
coordinate finction zi on H2(Dn). Simpler (but complex enough) examples
of pure n-isometry can be obtained by taking restrictions of the n-tuple of
multiplication operators by coordinate functions (Mz1 , . . . ,Mzn) on H2(Dn)
to invariant subspaces of H2(Dn) as follows. Given an invariant subspace S
of H2(Dn), we let

Rzi = Mzi |S ∈ B(S) (i = 1, . . . , n).

Then it is easy to see that (Rz1 , . . . , Rzn) is a pure n-isometry. We denote by
T (S) the C∗-algebra generated by the commuting isometries {Rz1 , . . . , Rzn}.
We simply say that T (S) is the C∗-algebra corresponding to the invariant
subspace S.

In this paper we aim to address three basic issues of pure n-isometries:
(i) analytic and canonical models for pure n-isometries, (ii) an abstract classi-
fication of joint invariant subspaces for pure n-isometries, and (iii) the nature
of C∗-algebra T (S) where S is a finite codimensional invariant subspace in
H2(Dn). To that aim, for (i) and (ii), we consider the initial approach by
Berger, Coburn and Lebow [6] from a more modern point of view (due to
Bercovici, Douglas and Foias [5]) along with the technique of [20]. For (iii),
we will examine Seto’s approach [28] more closely from “subspace” approxi-
mation point of view.

We now briefly outline the setting and the main contributions of this
paper. Let E be a Hilbert space, and let φ ∈ H∞

B(E)(D). We say that φ

is an inner function if φ(eit)∗φ(eit) = IE for almost every t (cf. page 196,
[21]). Recall that two n-tuples of commuting operators (A1, . . . , An) on H
and (B1, . . . , Bn) on K are said to be unitarily equivalent if there exists a
unitary operator U : H → K such that UAi = BiU for all i = 1, . . . , n. In [5],
motivated by Berger, Coburn and Lebow [6], Bercovici, Douglas and Foias
proved the following result: A pure n-isometry is unitarily equivalent to a
model pure n-isometry. The model pure n-isometries are defined as follows
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[5]: Consider a Hilbert space E , unitary operators {U1, . . . , Un} on E and
orthogonal projections {P1, . . . , Pn} on E . Let {Φ1, . . . ,Φn} ⊆ H∞

B(E)(D) be

bounded B(E)-valued holomorphic functions (polynomials) on D, where

Φi(z) = Ui(P
⊥
i + zPi) (z ∈ D),

and i = 1, . . . , n. Then the n-tuple of multiplication operators (MΦ1
, . . . ,MΦn

)
on H2

E(D) is called a model pure n-isometry if the following conditions are
satisfied:

(a) UiUj = UjUi for all i, j = 1, . . . n;
(b) U1 · · ·Un = IE ;
(c) Pi + U∗

i PjUi = Pj + U∗
j PiUj ≤ IE for all i ̸= j; and

(d) P1+U∗
1P2U1+U∗

1U
∗
2P3U2U1+· · ·+U∗

1U
∗
2 · · ·U∗

n−1PnUn−1 · · ·U2U1 = IE .

It is easy to see that a model pure n-isometry is also a pure n-isometry (see
page 643 in [5]).

We refer to Bercovici, Douglas and Foias [3, 4, 5] and also [10], [12], [15],
[8], [9], [14], [17], [19], [23], [28] and [31, 32] for more on pure n-isometries,
n ≥ 2, and related topics.

Our first main result, Theorem 2.1, states that a pure n-isometry is
unitarily equivalent to an explicit (and canonical) model pure n-isometry. In
other words, given a pure n-isometry (V1, . . . , Vn) on H, we explicitly solve
the above conditions (a)-(d) for some Hilbert space E , unitary operators
{U1, . . . , Un} on E and orthogonal projections {P1, . . . , Pn} on E so that the
corresponding model pure n-isometry (MΦ1

, . . . ,MΦn
) is unitarily equivalent

to (V1, . . . , Vn). This also gives a new proof of Bercovici, Douglas and Foias
theorem. On the one hand, our model pure n-isometry is explicit and canon-
ical. On the other hand, our proof is perhaps more computational than the
one in [5]. Another advantage of our approach is the proof of a list of use-
ful equalities related to commuting isometries, which can be useful in other
contexts.

Our second main result concerns a characterization of joint invariant
subspaces of model pure n-isometries. To be precise, let W be a Hilbert
space, and let (MΦ1

, . . . ,MΦn
) be a model pure n-isometry on H2

W(D). Let
S be a closed subspace of H2

W(D). In Theorem 3.1, we prove that S is in-
variant for (MΦ1 , . . . ,MΦn) on H2

W(D) if and only if there exist a Hilbert
space W∗, an inner function Θ ∈ H∞

B(W∗,W)(D) and a model pure n-isometry

(MΨ1
, . . . ,MΨn

) on H2
W∗

(D) such that

S = ΘH2
W∗

(D),

and

ΦiΘ = ΘΨi,

for all i = 1, . . . , n. Moreover, the above representation is unique in an ap-
propriate sense (see the remark following Theorem 3.1).

The third and final result concerns C∗-algebras corresponding to finite
codimensional invariant subspaces in H2(Dn). To be more specific, recall that
if n = 1 and S and S ′ are invariant subspaces of H2(D), then UT (S)U∗ =
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T (S ′) for some unitary U : S → S ′. Indeed, since S = θH2(D) for some
inner function θ ∈ H∞(D), it follows, by Beurling theorem, that U := Mθ :
H2(D) → S is a unitary and hence U∗T (S)U = T (H2(D)). Clearly, the
general case follows from this special case. For invariant subspaces S and S ′

of H2(Dn), we say that T (S) and T (S ′) are isomorphic as C∗-algebras if
UT (S)U∗ = T (S ′) holds for some unitary U : S → S ′. It is then natural to
ask: If n > 1 and S and S ′ are invariant subspaces of H2(Dn), are T (S) and
T (S ′) isomorphic as C∗-algebras?

In the same paper [6], Berger, Coburn and Lebow asked whether T (S) is
isomorphic to T (H2(D2)) for every finite codimensional invariant subspaces
S in H2(D2). This question was recently answered positively by Seto in [28].
Here we extend Seto’s answer fromH2(D2) to the general caseH2(Dn), n ≥ 2.

The rest of this paper is organized as follows. In Section 2 we study
and review the analytic construction of pure n-isometries. We also examine a
(canonical) model pure n-isometry. A characterization of invariant subspaces
is given in Section 3. Finally, in Section 4, we prove that T (S) is isomorphic to
T (H2(Dn)) where S is a finite codimensional invariant subspaces in H2(Dn).

2. pure n-isometries and Model pure n-isometries

In this section, we first derive an explicit analytic representation of a pure
n-isometry. Then we propose a canonical model for pure n-isometries.

For motivation, let us recall that if X on H is a bounded linear operator,
then X is a unilateral shift operator if and only if X and Mz on H2

W(X)(D)
are unitarily equivalent. Here

W(X) = kerX∗ = H⊖XH,

is the wandering subspace for X (see Halmos [16]) and Mz denotes the mul-
tiplication operator by the coordinate function z on H2

W(X)(D), that is,

(Mzf)(w) = wf(w) for all f ∈ H2
W(X)(D) and w ∈ D. Explicitly, if X is

a unilateral shift on H, then

H =
∞
⊕

m=0
XmW(X).

Hence the natural map ΠX : H → H2
W(X)(D) defined by

ΠX(Xmη) = zmη,

for all m ≥ 0 and η ∈ W(X), is a unitary operator and

ΠXX = MzΠX .

We call ΠX the Wold-von Neumann decomposition of the shift X.
Now let H be a Hilbert space, and let (V1, . . . , Vn) be a pure n-isometry

on H. Throughout this paper, we shall use the following notation:

Ṽi = Π
j ̸=i

Vj ,
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for all i = 1, . . . , n. For simplicity, we also use the notation

W = W(V ),

and

Wi = W(Vi) and W̃i = W(Ṽi),

for all i = 1, . . . , n. Since V = Πn
i=1Vi and Ṽi = V ∗

i V for all i = 1, . . . , n, it is
easy to see that

Wi, W̃i ⊆ W,

for all i = 1, . . . , n. We denote by PWi and PW̃i
the orthogonal projections

of W onto the subspaces Wi and W̃i, respectively.

Theorem 2.1. Let (V1, . . . , Vn) be a pure n-isometry on a Hilbert space H,
V = Πn

i=1Vi, and let W = W(V ). Let ΠV : H → H2
W(D) be the Wold-von

Neumann decomposition of V . If Ṽi = V ∗
i V and W̃i = W(Ṽi) , then

ΠV Vi = MΦi
ΠV ,

where

Φi(z) = Ui(PW̃i
+ zP⊥

W̃i
),

for all z ∈ D, and
Ui = (PWVi + Ṽi

∗
)|W ,

is a unitary operator on W and i = 1, . . . , n. In particular, (V1, . . . , Vn) on
H and (MΦ1

, . . . ,MΦn
) on H2

W(D) are unitarily equivalent.

Proof. Let ΠV : H → H2
W(D) be the Wold-von Neumann decomposition of

V . Then

ΠV ViΠ
∗
V ∈ {Mz}′,

and hence there exists Φi ∈ H∞
B(W)(D) [16, 21] such that ΠV ViΠ

∗
V = MΦi

or,

equivalently,

ΠV Vi = MΦiΠV ,

for all i = 1, . . . , n. Note that MΦi on H2
W(D) is defined by

(MΦif)(z) = Φi(z)f(z), (2.1)

for all f ∈ H2
W(D), z ∈ D and i = 1, . . . , n. We now proceed to compute the

bounded analytic functions {Φi}ni=1. Our method follows the construction in
[20]. In fact, a close variant of Theorem 2.1 below follows from Theorems
3.4 and 3.5 of [20]. We will only sketch the construction, highlighting the
essential ingredients for our present purpose. Let i ∈ {1, . . . , n}, z ∈ D and
η ∈ W. By an abuse of notation, we will also denote the constant function η
in H2

W(D) corresponding to the vector η ∈ W by η itself. Then from (2.1),
we have that

Φi(z)η = (MΦi
η)(z) = (ΠV ViΠ

∗
V η)(z).
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Now it follows from the definition of ΠV that Π∗
V η = η, and hence Φi(z)η =

(ΠV Viη)(z). But IW = PW̃i
+ ṼiṼ

∗
i |W yields that Viη = ViPW̃i

η+V Ṽ ∗
i η and

thus

ΠV Viη = ΠV (ViPW̃i
η + V Ṽ ∗

i η)

= ΠV (ViPW̃i
η) + ΠV (V Ṽ ∗

i η)

= ΠV (ViPW̃i
η) +MzΠV (Ṽ

∗
i η),

as ΠV V = MzΠV . Now, since V ∗(Vi(I − ṼiṼ
∗
i )V

∗
i ) = 0 and V ∗(Ṽ ∗

i η) = 0, it

follows that ViPW̃i
η ∈ W and Ṽ ∗

i η ∈ W. This implies that

ΠV Viη = ViPW̃i
η +MzṼ

∗
i η,

and so Φi(z)η = ViPW̃i
η + zṼ ∗

i η. It follows that Φi(z) = Vi|W̃i
+ zṼ ∗

i |ṼiWi

as W = ṼiWi ⊕ W̃i. Finally, W = Wi ⊕ ViW̃i implies that

Ui =

[
Ṽ ∗
i |ṼiWi

0
0 Vi|W̃i

]
:

ṼiWi

⊕
W̃i

→
Wi

⊕
ViW̃i

,

is a unitary operator on W. Therefore

Φi(z) = Ui(PW̃i
+ zP⊥

W̃i
),

for all z ∈ D. By definition of Ui, it follows that Ui = (ViPW̃i
+ Ṽi

∗
)|W . This

and

ViPW̃i
= PWVi, (2.2)

yields Ui = (PWVi + Ṽi
∗
)|W .

We now study the coefficients of the one-variable polynomials in The-
orem 2.1 more closely and prove that the corresponding pure n-isometry
(MΦ1

, . . . ,MΦn
) on H2

W(D) is a model pure n-isometry (see Section 1 for the
definition of model pure n-isometries).

Let (V1, . . . , Vn) be a pure n-isometry on a Hilbert space H. Consider
the analytic representation (MΦ1 , . . . ,MΦn) on H2

W(D) of (V1, . . . , Vn) as in
Theorem 2.1. First we prove that {Uj}nj=1 is a commutative family. Let p, q ∈
{1, . . . , n} and p ̸= q. As W = kerV ∗, it follows that

Ṽ ∗
p Ṽ

∗
q |W = 0.

Then using (2.2) we obtain

UpUq = (PWVp + Ṽ ∗
p )(PWVq + Ṽ ∗

q )|W
= (PWVpPWVq + Ṽ ∗

p PWVq + PWVpṼ
∗
q )|W

= (PWVpVq + Π
i̸=p,q

V ∗
i PW̃q

+ VpPW̃p
Ṽ ∗
q )|W

= (PWVpVq + ( Π
i ̸=p,q

V ∗
i )(PW̃q

+ ṼqPW̃p
Ṽ ∗
q ))|W

= (PWVpVq + ( Π
i ̸=p,q

V ∗
i ))|W ,
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as (PW̃q
+ ṼqPW̃p

Ṽ ∗
q )|W = IW , and hence

UpUq = UqUp,

follows by symmetry. Now if I ⊆ {1, . . . , n}, then the same line of arguments
as above yields

Π
i∈I

Ui = (PW( Π
i∈I

Vi) + ( Π
i∈Ic

V ∗
i ))|W . (2.3)

In particular, since PWV |W = 0, we have that

n

Π
i=1

Ui = IW .

The following lemma will be crucial in what follow.

Lemma 2.2. Fix 1 ≤ j ≤ n. Let I ⊆ {1, . . . , n}, and let j /∈ I. Then

( Π
i∈I

U∗
i )P

⊥
W̃j

( Π
i∈I

Ui) = ( Π
i∈Ic\{j}

Vi)( Π
i∈Ic\{j}

V ∗
i )|W − ( Π

i∈Ic
Vi)( Π

i∈Ic
V ∗
i )|W .

Proof. Since PW̃j
= IW−PW Ṽj Ṽ

∗
j |W , we have P⊥

W̃j
= PW Ṽj Ṽ

∗
j |W = Ṽj Ṽ

∗
j |W .

By once again using the fact that V ∗|W = PWV |W = 0, and by (2.3), one
sees that

( Π
i∈I

U∗
i )P

⊥
W̃j

( Π
i∈I

Ui) = [( Π
i∈I

V ∗
i ) + PW( Π

i∈Ic
Vi)]Ṽj Ṽ

∗
j [PW( Π

i∈I
Vi) + ( Π

i∈Ic
V ∗
i )]|W

= ( Π
i∈Ic\{j}

Vi)Ṽ
∗
j PW( Π

i∈I
Vi)|W

= ( Π
i∈Ic\{j}

Vi)Ṽ
∗
j (I − V V ∗)( Π

i∈I
Vi)|W

= ( Π
i∈Ic\{j}

Vi)( Π
i∈Ic\{j}

V ∗
i )|W − ( Π

i∈Ic
Vi)( Π

i∈Ic
V ∗
i )|W

This completes the proof of the lemma.

Theorem 2.3. If (V1, . . . , Vn) be an n-isometry on a Hilbert space H, and let
U1, . . . , Un be unitary operators as in Theorem 2.1. Then

(a) UpUq = UqUp for p, q = 1, . . . n,
(b)

∏n
p=1 Up = IW ,

(c) (P⊥
W̃i

+ U∗
i P

⊥
W̃j

Ui) = (P⊥
W̃j

+ U∗
j P

⊥
W̃i

Uj) ≤ IW (1 ≤ i < j ≤ n),

(d) P⊥
W̃1

+U∗
1P

⊥
W̃2

U1+U∗
1U

∗
2P

⊥
W̃2

U2U1+· · ·+(Π
n−1
i=1 U∗

i )P
⊥
W̃n

(Π
n−1
i=1 Ui) = IW .

Proof. By lemma 2.2 applied to I = {p} and j = q, where p, q ∈ {1, . . . , n}
and p ̸= q, we have

U∗
pP

⊥
W̃q

Up = ( Π
i ̸=p,q

Vi)( Π
i ̸=p,q

V ∗
i )|W − ṼpṼp

∗|W ,

hence

(P⊥
W̃p

+ U∗
pP

⊥
W̃q

Up) = PW ṼpṼp
∗|W + ( Π

i ̸=p,q
Vi)( Π

i ̸=p,q
V ∗
i )|W − PW ṼpṼp

∗|W

= ( Π
i̸=p,q

Vi)( Π
i̸=p,q

V ∗
i )|W

≤ IW .
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Therefore by symmetry, we have

(P⊥
W̃p

+ U∗
pP

⊥
W̃q

Up) = (P⊥
W̃q

+ U∗
q P

⊥
W̃p

Uq) ≤ IW .

Finally, we let Ij = {1, . . . , j − 1} for all 1 < j ≤ n and In+1 = {1, . . . , n}.
Then Lemma 2.2 implies that for 1 < j ≤ n,

( Π
i∈Ij

Ui)P
⊥
W̃j

( Π
i∈Ij

U∗
i ) = [( Π

i∈Ic
j+1

Vi)( Π
i∈Ic

j+1

V ∗
i )− ( Π

i∈Ic
j

Vi)( Π
i∈Ic

j

V ∗
i )]|W .

This and P⊥
W̃1

= Ṽ1Ṽ
∗
1 |W imply that

P⊥
W̃1

+ U∗
1P

⊥
W̃2

U1 + U∗
1U

∗
2P

⊥
W̃3

U2U1 + · · ·+ (
n−1

Π
i=1

U∗
i )P

⊥
W̃n

(
n−1

Π
i=1

Ui) = IW .

This completes the proof of the theorem.

As a corollary, we have:

Corollary 2.4. Let H be a Hilbert space and (V1, . . . , Vn) be a pure n-isometry
on H. Let (MΦ1 , . . . ,MΦn) be the pure n-isometry as constructed in Theorem

2.1, and let (MΨ1 , . . . ,MΨn) on H2
W̃(D), for some Hilbert space W̃, unitary

operators {Ũi}ni=1 and orthogonal projections {Pi}ni=1 on W̃, be a model pure
n-isometry. Then:

(a) (MΦ1 , . . . ,MΦn) is a model pure n-isometry.
(b) (V1, . . . , Vn) and (MΦ1

, . . . ,MΦn
) are unitarily equivalent.

(c) (V1, . . . , Vn) and (MΨ1
, . . . ,MΨn

) are unitarily equivalent if and only if

there exists a unitary operator W : W → W̃ such that WUi = ŨiW and
WPi = P̃iW for all i = 1, . . . , n.

Proof. Parts (a) and (b) follows directly from the previous theorem. The
third part is easy and readily follows from Theorem 4.1 in [20] or Theorem
2.9 in [5].

Combining Corollary 2.4 with Theorem 2.3, we have the following char-
acterization of commutative isometric factors of shift operators.

Corollary 2.5. Let E be a Hilbert space, and let {Φi}ni=1 ⊆ H∞
B(E)(D) be a

commutative family of isometric multipliers. Then

Mz =
n

Π
i=1

MΦj ,

or, equivalently
n

Π
i=1

Φj(z) = zIE , (z ∈ D)

if and only if, up to unitary equivalence, (MΦ1
, . . . ,MΦn

) is a model pure
n-isometry.

In other words, zIE factors as n commuting isometric multipliers {Φi}ni=1

in H∞
B(E)(D) if and only if there exist unitary operators {Ui}ni=1 on E and

orthogonal projections {Pi}ni=1 on E satisfying the properties (a) - (d) in
Theorem 2.3 such that Φi(z) = Ui(P

⊥
i + zPi) for all i = 1, . . . , n.
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3. Joint Invariant Subspaces

Let W be a Hilbert space. Let (MΦ1
, . . . ,MΦn

) be a model pure n-isometry
on H2

W(D), and let S be a closed invariant subspace for (MΦ1
, . . . ,MΦn

) on
H2

W(D), that is
MΦi

S ⊆ S,
for all i = 1, . . . , n. Then (MΦ1 |S , . . . ,MΦn |S) is an n-tuple of commuting
isometries on S. Clearly

n

Π
i=1

(MΦi |S) = (
n

Π
i=1

MΦi)|S ,

and since
n

Π
j=1

MΦj
= Mz,

it follows that

(
n

Π
i=1

MΦi
)|S = Mz|S , (3.1)

that is, S is a invariant subspace for Mz on H2
W(D). Moreover, since Mz|S is

a unilateral shift on S, the tuple (MΦ1
|S , . . . ,MΦn

|S) is a pure n-isometry on
S. Then by Corollary 2.4 there is a model pure n-isometry (MΨ1

, . . . ,MΨn
)

on H2
W̃(D), for some Hilbert space W̃, such that (MΦ1

|S , . . . ,MΦn
|S) and

(MΨ1
, . . . ,MΨn

) are unitarily equivalent. The main purpose of this section is
to describe the invariant subspaces S in terms of the model pure n-isometry
(MΨ1 , . . . ,MΨn).

As a motivational example, consider the classical n = 1 case. Here the
model pure 1-isometry is the multiplication operator Mz on H2

W(D) for some
Hilbert space W. Let S be a closed subspace of H2

W(D). Then by the Beurling
[7], Lax [18] and Halmos [16] theorem (or see page 239, Theorem 2.1 in [13]),
S is invariant for Mz if and only if there exist a Hilbert space W∗ and an
inner function Θ ∈ H∞

B(W∗,W)(D) such that

S = ΘH2
W∗

(D).
Moreover, in this case, if we set

V = Mz|S ,
then W∗ = S ⊖ zS and V on S and Mz on H2

W∗
(D) are unitarily equivalent.

This follows directly from the above representation of S. Indeed, it follows
that X = MΘ : H2

W∗
(D) → ranMΘ = S is a unitary operator and

XMz = V X.

Now, we proceed with the general case.

Theorem 3.1. Let n > 1. Let W be a Hilbert space, (MΦ1 , . . . ,MΦn) be a
model pure n-isometry on H2

W(D), and let S be a closed subspace of H2
W(D).

Then S is invariant for (MΦ1
, . . . ,MΦn

) on H2
W(D) if and only if there exist

a Hilbert space W∗, an inner function Θ ∈ H∞
B(W∗,W)(D) and a model pure

n-isometry (MΨ1 , . . . ,MΨn) on H2
W∗

(D) such that

S = ΘH2
W∗

(D),
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and

ΦjΘ = ΘΨj ,

for all j = 1, . . . , n.

Proof. Let (MΦ1 , . . . ,MΦn) be a model pure n-isometry on H2
W(D), and let

S be a closed invariant subspace for (MΦ1 , . . . ,MΦn) on H2
W(D). Let

W∗ = S ⊖ zS.

Since S is an invariant subspace for Mz on H2
W(D) (see Equation (3.1)),

by Beurling, Lax and Halmos theorem, there exists an inner function Θ ∈
H∞

B(W∗,W)(D) such that S can be represented as

S = ΘH2
W∗

(D),

If 1 ≤ j ≤ n, then

ΦjS ⊆ S,
implies that ran (MΦj

MΘ) ⊆ ran MΘ, and so by Douglas’s range and inclu-
sion theorem [11]

MΦj
MΘ = MΘMΨj

,

for some Ψj ∈ H∞
B(W∗)

(D). Note that MΦjMΘ is an isometry and ∥ΘΨjf∥ =

∥Ψjf∥ for each f ∈ H2
W∗

(D). But then ∥MΨj
f∥ = ∥f∥ implies that MΨj

is
an isometry, that is, Ψj is an inner function, and hence

MΨj
= M∗

ΘMΦj
MΘ,

for all j = 1, . . . , n. So
n

Π
i=1

MΨi = (M∗
ΘMΦ1MΘ) · · · (M∗

ΘMΦnMΘ).

Now Pran MΘ = MΘM
∗
Θ and ΦjΘH2

W∗
(D) ⊆ ΘH2

W∗
(D) implies that

MΘM
∗
ΘMΦj

MΘ = MΦj
MΘ,

for all j = 1, . . . , n. Consequently
n

Π
j=1

MΨj = M∗
Θ(

n

Π
j=1

MΦj )M
∗
Θ = M∗

ΘMzMΘ = M∗
ΘMΘMz = Mz,

that is, (MΨ1 , . . . ,MΨn) is a pure n-isometry on H2
W∗

(D). In view of Corol-
lary 2.5, this also implies that the tuple (MΨ1

, . . . ,MΨn
) is a model pure

n-isometry. This completes the proof of the theorem.

The representation of S is unique in the following sense: if there exist
a Hilbert space Ŵ, an inner multiplier Θ̂ ∈ H∞

B(Ŵ,W)
(D) and a model pure

n-isometry (MΨ̂1
, . . . ,MΨ̂n

) on H2
Ŵ(D) such that S = Θ̂H2

Ŵ(D) and ΦiΘ̂ =

Θ̂Ψ̂i for all i = 1, . . . , n, then there exists a unitary τ : W∗ → Ŵ such that

Θ = Θ̂τ,

and

Ψ̂jτ = τΨj (j = 1, . . . , n).
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In other words, the model pure n-isometries (MΨ̂1
, . . . ,MΨ̂n

) on H2
Ŵ(D) and

(MΨ1
, . . . ,MΨn

) on H2
W∗

(D) are unitary equivalent (under the same unitary
τ). Indeed, the existence of the unitary τ along with the first equality follows
from the uniqueness of the Beurling, Lax and Halmos theorem (cf. page 239,
Theorem 2.1 in [13]). For the second equality, observe that (see the uniqueness
part in [19])

Θ̂τΨi = ΘΨi = ΦiΘ = ΦiΘ̂τ,

that is Θ̂τΨi = Θ̂Ψ̂iτ , and so

τΨi = Ψ̂iτ,

for all i = 1, . . . , n.
It is curious to note that the content of Theorem 3.1 is related to the

question [1] and its answer [26] on the classifications of invariant subspaces
of Γ-isometries. A similar result also holds for invariant subspaces for the
multiplication operator tuple on the Hardy space over the unit polydisc in
Cn (see [19]).

Our approach to pure n-isometries has other applications to n-tuples,
n ≥ 2, of commuting contractions (cf. see [9]) that we will explore in a future
paper.

4. C∗-algebras generated by commuting isometries

In this section, we extend Seto’s result [28] on isomorphic C∗-algebras of
invariant subspaces of finite codimension inH2(D2) to that inH2(Dn), n ≥ 2.
Given a Hilbert space H, the set of all compact operators from H to itself is
denoted byK(H). Recall that, for a closed subspace S ⊆ H2(Dn), we say that
S is an invariant subspace of H2(Dn) if MziS ⊆ S for all i = 1, . . . , n. Also
recall that in the case of an invariant subspace S of H2(Dn), (Rz1 , . . . , Rzn)
is an n-isometry on S where

Rzi = Mzi |S ∈ B(S) (i = 1, . . . , n).

Lemma 4.1. If S is an invariant subspace of finite codimension in H2(Dn),
then K(S) ⊆ T (S).

Proof. Since T (S) is an irreducible C∗-algebra (cf. [28], Proposition 2.2), it
is enough to prove that T (S) contains a non-zero compact operator. As

n

Π
i=1

(IH2(Dn) −MziM
∗
zi) = PC ∈ T (H2(Dn)),

we are done when S = H2(Dn). Let us now suppose that S is a proper
subspace of H2(Dn). For arbitrary 1 ≤ i < j ≤ n, we have

[R∗
zi , Rzj ] = PSM

∗
ziMzj |S − PSMzjPSM

∗
zi |S = PSMzjPS⊥M∗

zi |S ∈ K(S),

as S⊥ is finite dimensional. It remains for us to prove that [R∗
zi , Rzj ] ̸= 0

for some 1 ≤ i < j ≤ n. If not, then S is a proper doubly commuting
invariant subspace with finite codimension. As a result, we would have S =
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φH2(Dn) for some inner function φ ∈ H∞(Dn) ([27]) and hence S has infinite
codimension (see the corollary in page 969, [2]), a contradiction.

In what follows, a finite rank operator on a Hilbert space will be denoted
by F (without referring to the ambient Hilbert space). Also, if M is an
invariant subspaces of H2(Dn), then we set

RM
zi = Mzi |M ∈ B(M),

and simply write Rzi , i = 1, . . . , n, when M is clear from the context.

Lemma 4.2. Suppose M1 and M2 are invariant subspaces of H2(Dn), M1 ⊆
M2 and dim(M2 ⊖M1) < ∞. Then T (M1) = {PM1

T |M1
: T ∈ T (M2)}.

Moreover, if L is a closed subspace of M1 and PM2

L ∈ T (M2), then PM1

L ∈
T (M1).

Proof. Note that RM2
zi |M1

= RM1
zi and so, by taking adjoint, we have

PM1(R
M2
zi )∗|M1 = (RM1

zi )∗,

for all i = 1, . . . , n. Then RM1
zi (RM1

zj )∗ = PM1
RM2

zi PM2

M1
(RM2

zj )∗|M1
, i =

1, . . . , n. This yields

RM1
zi (RM1

zj )∗ = PM1R
M2
zi IM2(R

M2
zj )∗|M1 − PM1R

M2
zi PM2

M2⊖M1
(RM2

zi )∗|M1

= PM1
RM2

zi (RM2
zj )∗|M1

+ F,

for all i, j = 1, . . . , n, as dim(M2 ⊖ M1) < ∞. Similarly (RM1
zj )∗RM1

zi =

PM1(R
M2
zj )∗RM2

zi |M1 + F for all i, j = 1, . . . , n. Now let T1 ∈ T (M1) be a
finite word formed from the symbols

{RM1
zi , (RM1

zi )∗ : i = 1, . . . , n},

and let T2 ∈ T (M2) be the same word but formed from the corresponding
symbols in

{RM2
zi , (RM2

zi )∗ : i = 1, . . . , n}.
Then T1 = PM1

T2|M1
+F . Since both T (M1) and {PM1

T |M1
: T ∈ T (M2)}

are closed subspaces of B(M1) and both contain all the compact operators
in B(M1), it follows that T (M1) = {PM1

T |M1
: T ∈ T (M2)}. The second

assertion now clearly follows from the first one.

A thorough understanding of co-doubly commuting invariant subspaces
of finite codimension is important to analyze C∗-algebras of invariant sub-
spaces of finite codimension in H2(Dn). If S is a closed invariant subspace of
H2(D), then we know that S = θH2(D) for some inner function θ ∈ H∞(D).
To simplify notations, for a given inner function θ ∈ H∞(D), we denote

Sθ = θH2(D), and Qθ = H2(D)⊖ θH2(D).

Also, given an inner function θi ∈ H∞(D), 1 ≤ i ≤ n, denote by Mθi the
multiplication operator

(Mθif)(z1, . . . , zn) = θi(zi)f(z1, . . . , zn)
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for all f ∈ H2(Dn) and (z1, . . . , zn) ∈ Dn. Recall now that an invariant
subspace S of H2(Dn) is said to be co-doubly commuting [25] if S = SΦ

where

SΦ = (Qφ1
⊗ · · · ⊗ Qφn

)⊥, (4.1)

and φi, i = 1, . . . , n, is either inner or the zero function. We warn the reader
that the suffix Φ in SΦ refers to the finite Blaschke products {φi}ni=1. Here,
in view of (4.1) (or see [25]), we have

(Mφp
M∗

φp
)(Mφq

M∗
φq
) = (Mφq

M∗
φq
)(Mφp

M∗
φp
),

for all p, q = 1, . . . , n, and

PSΦ
= IH2(Dn) −

n

Π
i=1

(IH2(Dn) −Mφi
M∗

φi
). (4.2)

It also follows that

SΦ = Mφ1
H2(Dn) + · · ·+Mφn

H2(Dn).

Therefore, SΦ has finite codimension if and only if φi is a finite Blashcke
product for all i = 1, . . . , n. Moreover, it can be proved following the same
line of argument as Lemma 3.1 in [28] that if S is an invariant subspace
of H2(Dn) then S is of finite codimension if and only if there exist finite
Blaschke products φ1, . . . , φn such that

SΦ ⊆ S.
Given SΦ as in (4.1) and 1 ≤ i < j ≤ n, we define QΦ[i, j] by

QΦ[i, j] = Qφi
⊗Qφi+1

⊗ · · · ⊗ Qφj
⊆ H2(Dj−i+1).

Lemma 4.3. Let {φi}ni=1 be finite Blaschke products. If

L1 = QΦ[1, n− 1]
⊥ ⊗H2(D), L2 = QΦ[1, n− 1]⊗ Sφn

,

L3 = QΦ[1, n− 1]⊗H2(D),L′
2 = QΦ[1, n− 1]⊗ φnSφn

and

L′′
2 = QΦ[1, n− 1]⊗ φnQφn ,

then PL1
, PL2

, PL′
2
and PL′′

2
are in T (H2(Dn)) and PSΦ

L1
, PSΦ

L2
, PSΦ

L′
2

and PSΦ

L′′
2

are in T (SΦ).

Proof. Clearly SΦ = L1 ⊕ L2, H
2(Dn) = L1 ⊕ L3 and L2 = L′

2 ⊕ L′′
2 . By

virtue of Lemma 4.2, we only prove the lemma for H2(Dn). Since L′′
2 is

finite-dimensional, it follows, by Lemma 4.1, that PL′′
2
∈ T (H2(Dn)). Since

φi ∈ H∞(D) is a finite Blaschke product, it follows that φi is holomorphic in
an open set containing the closure of the disc, and hence Mφi

= φi(Mzi) ∈
T (H2(Dn)) for all i = 1, . . . , n. Then, by (4.2), PSΦ

∈ T (H2(Dn)). In view of
SΦ = L1 ⊕ L2, it is then enough to prove only that PL2

∈ T (H2(Dn)). This
readily follows from the equality

PL2
=

( n−1

Π
i=1

(IH2(Dn) −Mφi
M∗

φi
)
)
Mφn

M∗
φn

.

This completes the proof of the lemma.
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In particular, T (SΦ) contains a wealth of orthogonal projections. This
leads to some further observations concerning the C∗-algebra T (SΦ). First,
given SΦ as in (4.1), we consider the unitary operator U : H2(Dn) → SΦ

defined by

U =

[
IL1

0
0 Mφn

]
:
L1

⊕
L3

→
L1

⊕
L2

.

Then U = PL1
+Mφn

PL3
and U∗ = PSΦ

L1
+M∗

φn
PSΦ

L2
. We have the following

result:

Theorem 4.4. If {φi}ni=1 are finite Blaschke products, then

U∗T (SΦ)U = T (H2(Dn)).

In particular, T (SΦ) and T (H2(Dn)) are unitarily equivalent.

Proof. A simple computation first confirms that

U∗RznU = Mzn ∈ T (H2(Dn)),

that is
Mzn ∈ U∗T (SΦ)U and Rzn ∈ UT (H2(Dn))U∗.

Next, let i = 1, . . . , n− 1. Then

RziU = MziPL1
+RziMφn

PL3
= MziPL1

+MziMφn
PL3

,

as Mφn
L3 = L2 ⊆ SΦ, and so

U∗RziU = (PSΦ

L1
+M∗

φn
PSΦ

L2
)(MziPL1

+MziMφn
PL3

)

= MziPL1
+ PL1

MziMφn
PL3

+M∗
φn

PL2
MziMφn

PL3
,

as MziL1 ⊆ L1 and MziMφn
L3 = MziL2 ⊆ SΦ. Then U∗RziU ∈ T (H2(Dn))

for al i = 1, . . . , n, by Lemma 4.3. In particular

U∗T (SΦ)U ⊆ T (H2(Dn)).

On the other hand, since L2 = L′
2⊕L′′

2 and L′′
2 is finite dimensional, it follows

that PL2
= PL′

2
+ F , and thus U∗ = U∗|L1

+ U∗|L′
2
+ F . Now UMziU

∗|L1
=

UMzi |L1
= Mzi |L1

as ziL1 ⊆ L1 and hence

UMziU
∗|L1 = Rzi |L1 ,

and on the other hand

UMziU
∗|L′

2
= U(MziM

∗
φn

|L′
2
) = U(MziPSΦM

∗
φn

)|L′
2
= U(RziR

∗
φn

)|L′
2
,

where Rφn
= Mφn

|SΦ
. Moreover, since L3 = L2⊕S⊥

Φ and S⊥
Φ is finite dimen-

sional, it follows that PL3
= PL2

+ F , and thus

UMziU
∗|L′

2
= PL1

RziR
∗
φn

|L′
2
+Mφn

PL3
RziR

∗
φn

|L′
2

= PL1
RziR

∗
φn

|L′
2
+Mφn

PL2
RziR

∗
φn

|L′
2
+ F

= PSΦ

L1
RziR

∗
φn

|L′
2
+Rφn

PSΦ

L2
RziR

∗
φn

|L′
2
+ F,

and hence

UMziU
∗ = RziP

SΦ

L1
+ PSΦ

L1
RziR

∗
φn

PSΦ

L′
2
+Rφn

PSΦ

L2
RziR

∗
φn

PSΦ

L′
2
+ F.
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By Lemma 4.3, it follows then that UMziU
∗ ∈ T (SΦ) and so

UT (H2(Dn))U∗ ⊆ T (SΦ).

Therefore, the conclusion follows from the fact that U∗RznU = Mzn ∈
T (H2(Dn)).

Now let S be an invariant subspace of finite codimension, and let SΦ ⊆
S, as in (4.1), for some finite Blashcke products {φi}ni=1. We proceed to prove
that T (S) is unitarily equivalent to T (SΦ). Let

m := dim(S ⊖ SΦ).

Observe that

PSΦ = Mφ1M
∗
φ1

+ (IH2(Dn) −Mφ1M
∗
φ1
)
(
IH2(Dn) −

n

Π
i=2

(IH2(Dn) −MφiM
∗
φi
)
)
,

and so

SΦ =
(
Sφ1 ⊗H2(Dn−1)

)
⊕
(
Qφ1 ⊗QΦ[2, n]

⊥
)
.

Lemma 4.5. PS
Sφ1

⊗H2(Dn−1), P
S
Qφ1⊗QΦ[2,n]⊥

∈ T (S) and

PSΦ

Sφ1⊗H2(Dn−1), P
SΦ

Qφ1⊗QΦ[2,n]⊥
∈ T (SΦ).

Proof. First one observes that, by virtue of Lemma 4.2, it is enough to prove
the result for S. Note that Mφ1

S ⊆ S. Define Rφ1
∈ B(S) by Rφ1

= Mφ1
|S .

Then Rφ1
= φ1(Mz1)|S ∈ T (S) and

PMφ1S = Rφ1
R∗

φ1
∈ T (S).

Now on the one hand

Sφ1 ⊗H2(Dn−1) = Mφ1H
2(Dn) = Mφ1S ⊕

(
Mφ1H

2(Dn)⊖Mφ1S
)
,

also, Mφ1
H2(Dn) ⊖ Mφ1

S = Mφ1
(H2(Dn) ⊖ S) is finite dimensional, and

hence we conclude PSφ1
⊗H2(Dn−1) ∈ T (S). This along with dim (S⊖SΦ) < ∞

and the decomposition

S = (Sφ1
⊗H2(Dn−1))⊕ (Qφ1

⊗QΦ[2, n]
⊥
)⊕ (S ⊖ SΦ),

implies that PQφ1
⊗QΦ[2,n]⊥ ∈ T (S). This completes the proof of the lemma.

For simplicity, let us introduce some more notation. Given q ∈ N, let us
denote

C⊗q = C⊗ · · · ⊗ C ⊆ H2(Dq).

Note that C⊗q is the one-dimensional subspace consisting of the constant
functions in H2(Dq). Recalling dim(S ⊖ SΦ) = m(< ∞), we consider the
orthogonal decomposition of Sφ1 ⊗H2(Dn−1) as:

Sφ1
⊗H2(Dn−1) = S1 ⊕ S2 ⊕ S3,
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where 
S1 = (φ1Qzm)⊗ C⊗(n−2) ⊗H2(D)
S2 = Szmφ1

⊗ C⊗(n−2) ⊗H2(D)
S3 = Sφ1

⊗ (C⊗(n−2))⊥ ⊗H2(D).
Finally, we define

L = S2 ⊕ S3 ⊕
(
Qφ1

⊗QΦ[2, n]
⊥
)
.

With this notation we have

SΦ = S1 ⊕ L,

and

S = (S ⊖ SΦ)⊕ S1 ⊕ L.

Lemma 4.6. PS
Si

∈ T (S) and PSΦ

Si
∈ T (SΦ) for all i = 1, 2, 3.

Proof. In view of Lemma 4.2, it is enough to prove that PS
Si

∈ T (S), i =
1, 2, 3. Note that PSφ1⊗C⊗(n−2)⊗H2(D) ∈ T (S) as

PSφ1⊗C⊗(n−2)⊗H2(D) = PSφ1
⊗H2(Dn−1)(IS −X)PSφ1

⊗H2(Dn−1),

where

X =
∑

2≤i1<···<ik≤n−1

(−1)k+1Rzi1
· · ·Rzik

R∗
zi1

· · ·R∗
zik

.

Therefore

PS3 = PSφ1⊗H2(Dn−1) − PSφ1
⊗C⊗(n−2)⊗H2(D) ∈ T (S).

Finally, since PS2
= Rm

z1PSφ1
⊗C⊗(n−2)⊗H2(D)R

∗m
z1 and S1⊕S2 = Sφ1

⊗C⊗(n−2)⊗
H2(D), it follows that PS1

and PS2
are in T (S).

Before we proceed to the unitary equivalence of the C∗-algebras T (S)
and T (SΦ) we note that

φ1Qzm = span {φ1, φ1z, . . . , φ1z
m−1}.

Theorem 4.7. If S is a finite co-dimensional invariant subspace of H2(Dn)
and SΦ ⊆ S for some finite Blaschke products {φi}ni=1, then T (S) and T (SΦ)
are unitarily equivalent.

Proof. By noting that H2(D) = C⊕ Sz, we decompose S1 as S1 = F1 ⊕M1

where

F1 = (φ1Qzm)⊗ C⊗(n−1), and M1 = (φ1Qzm)⊗ C⊗(n−2) ⊗ Sz.

Taking into consideration dimF1 = dim (S ⊖ SΦ), we have a unitary V :
F1 → S ⊖ SΦ, and then, using the decompositions

SΦ = F1 ⊕M1 ⊕ L.

and

S = (S ⊖ SΦ)⊕ S1 ⊕ L,
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we see that

U =

V 0 0
0 M∗

zn 0
0 0 IL

 : F1 ⊕M1 ⊕ L → (S ⊖ SΦ)⊕ S1 ⊕ L,

defines a unitary from SΦ to S. We claim that U∗T (S)U = T (SΦ). First
we prove that U∗T (S)U ⊆ T (SΦ). Since dimF1 < ∞, it suffices to prove
that U∗RS

ziU |M1⊕L ∈ T (SΦ) for all i = 1, · · · , n. Observe first that UM1 =
M∗

znM1 = S1 ⊆ SΦ, MznS1 ⊆ S1 and MznL ⊆ L. Since

U∗RS
znU |M1⊕L = U∗MznM

∗
zn |M1 +Mzn |L,

and U∗MznM
∗
zn |M1

= M2
znM

∗
zn |M1

= M2
znPSΦ

M∗
zn |M1

, it follows that

U∗RS
znU |M1⊕L = (RSΦ

zn )2(RSΦ
zn )∗PSΦ

M1
+RSΦ

zn PSΦ

L ∈ T (SΦ).

Now for 1 < i < n, we have

U∗RS
ziU |M1⊕L = U∗MziM

∗
zn |M1

+ U∗Mzi |L,

where U∗MziM
∗
zn |M1

= MziM
∗
zn |M1

as ziS1 ⊆ S3 ⊆ L. On the other hand,
since ziS2 ⊆ S3 we have ziL ⊆ L and hence U∗Mzi |L = Mzi |L, whence

U∗RS
ziU |M1⊕L = RSΦ

zi (RSΦ
zn )∗PSΦ

M1
+RSΦ

zi PSΦ

L ∈ T (SΦ).

Now we decompose M1 as M1 = K1 ⊕ K̃1 where

K1 = (φ1Qzm−1)⊗ C⊗(n−2) ⊗ Sz and K̃1 = (φ1z
m−1C)⊗ C⊗(n−2) ⊗ Sz.

Then

U∗RS
z1U |M1

= U∗Mz1M
∗
zn |K1

+U∗Mz1M
∗
zn |K̃1

= MznMz1M
∗
zn |K1

+Mz1M
∗
zn |K̃1

,

asMz1M
∗
znK1 ⊆ S1 andMz1M

∗
znK̃1 ⊆ S2. On the other hand, U∗RS

z1U |S2⊕S3
=

Mz1 |S2⊕S3
as Mz1(S2 ⊕ S3) ⊆ S2 ⊕ S3 ⊆ L, and finally, by denoting N =

Qφ1
⊗QΦ[2, n]

⊥
, we have

U∗RS
z1U |N = U∗Mz1 |N = U∗(IS − PS

S1
)Mz1 |N + U∗PS

S1
Mz1 |N .

Then S ⊖ S1 = (S ⊖ SΦ)⊕ L and Mz1N ⊆ SΦ implies that

U∗RS
z1U |N = PSΦ

L Mz1 |N +MznP
SΦ

S1
Mz1 |N ,

and so

U∗RS
z1U |M1⊕L = RSΦ

zn RSΦ
z1 (RSΦ

zn )∗PSΦ

K1
+RSΦ

z1 (RSΦ
zn )∗PSΦ

K̃1
+RSΦ

z1 PSΦ

S2⊕S3

+ PSΦ

L RSΦ
z1 PSΦ

N +RSΦ
zn PSΦ

S1
RSΦ

z1 PSΦ

N + F.

This implies that U∗RS
z1U ∈ T (SΦ), and therefore U∗T (S)U ⊆ T (SΦ). We

now proceed to prove the reverse inclusion UT (SΦ)U
∗ ∈ T (S). Since dim(S⊖

SΦ) < ∞, it is enough to prove that URSΦ
zi U∗|S1⊕L ∈ T (S) for all i = 1, . . . , n.

Once again, note that U∗S1 = M1 ⊆ SΦ, znM1 ⊆ M1, znS1 ⊆ S1 and
znL ⊆ L. Hence

URSΦ
zn U∗|S1⊕L = UM2

zn |S1
+ UMzn |L = Mzn |S1

+Mzn |L,
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that is

URSΦ
zn U∗|S1⊕L = RS

znP
S
S1⊕L ∈ T (S).

Now, for fixed 1 < i < n, we have ziM1 ⊆ S3 and ziL ⊆ L. Then

URSΦ
zi U∗|S1⊕L = UMziMzn |S1

+ UMzi |L
= MziMzn |S1

+Mzi |L
= RS

ziR
S
znP

S
S1

+RS
ziPL ∈ T (S).

Finally, we consider the decomposition S1 = S ′
1 ⊕ S ′′

1 where

S ′
1 = (φ1Qzm−1)⊗C⊗(n−2)⊗H2(D) and S ′′

1 = (φ1z
m−1C)⊗C⊗(n−2)⊗H2(D).

Then

URSΦ
z1 U∗|S1

= UMz1Mzn |S′
1
+ UMz1Mzn |S′′

1

= M∗
znMz1Mzn |S′

1
+Mz1Mzn |S′′

1

= Mz1 |S′
1
+Mz1Mzn |S′′

1
,

as z1znS ′
1 ⊆ M1 and z1znS ′′

1 ⊆ S2. Moreover

URSΦ
z1 U∗|S2⊕S3 = UMz1 |S2⊕S3 = Mz1 |S2⊕S3 ,

as z1(S2 ⊕ S3) ⊆ S2 ⊕ S3. From the definition of N , it follows that

URSΦ
z1 U∗|N = UPSΦ

M1
Mz1 |N + U(ISΦ

− PSΦ

M1
)Mz1 |N ,

this in turn implies that

URSΦ
z1 U∗|N = M∗

znP
S
M1

Mz1 |N + PS
LMz1 |N + F,

as SΦ ⊖M1 = F1 ⊕ L and F1 is finite dimensional. Therefore

URSΦ
z1 U∗|S1⊕L = RS

z1P
S
S′
1
+RS

z1R
S
znP

S
S′′
1
+RS

z1P
S
S2⊕S3

+ (RS
zn)

∗PS
M1

Mz1P
S
N + PS

LRS
z1P

S
N + F ∈ T (S).

This completes the proof of the theorem.

On combining Theorem 4.4 and Theorem 4.7, we have the following:

Theorem 4.8. If S is a finite co-dimensional invariant subspace of H2(Dn),
then T (S) and T (H2(Dn)) are unitarily equivalent.

In the case n = 2, the proof of the above result is considerably simpler
and direct than the one by Seto [28] (for instance, if n = 2, then 1 < i < n
case does not appear in the proof of Theorem 4.7).
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