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Notations
H, E, Es Hilbert spaces
B(E, &) The space of all bounded linear operators from &£ to &,
B(€) The space of all bounded linear operators on &
Dn Open unit polydisc in C™
H?(D") Hardy space on D™
HZ(D") &-valued Hardy space on D"

Hyle g.)(D") Set of all B(€, £,)-valued bounded analytic functions on D™.
(M,,,...,M, ) n-tuple of multiplication operator by the coordinate
functions on H?(D")
(1) All Hilbert spaces are assumed to be over the complex numbers.
(2) For a closed subspace S of a Hilbert space H, we denote by Ps the or-
thogonal projection of H onto S.
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(3) For nested closed subspaces M; C My C H, the orthogonal projection
of M5 onto M; is denoted by Pj‘jf

1. Introduction

Tuples of commuting isometries on Hilbert spaces are cental objects of study
in (multivariable) operator theory. This paper is concerned with the study
of analytic representations, joint invariant subspaces and C*-algebras of a
certain class of tuples of commuting isometries.

To be precise, let H be a Hilbert space, and let (V1,...,V;,) be an n-
tuple of commuting isometries on H. In what follows, we always assume that
n > 2. Set

V:ﬁw

We say that (Vi,...,V,,) is a pure n-isometry if V is a unilateral shift. A
closed subspace & C H?(D") is said to be an invariant subspace of H?(D") if
M,,S CSforalli=1,...,n where M,, is the multiplication operator by the
coordinate finction z; on H?(D"). Simpler (but complex enough) examples
of pure n-isometry can be obtained by taking restrictions of the n-tuple of
multiplication operators by coordinate functions (M,,, ..., M,,) on H*(D")
to invariant subspaces of H?(D") as follows. Given an invariant subspace S
of H*(D"), we let

R., =M., |s € B(S) (i=1,...,n).

Then it is easy to see that (R.,, ..., R,,) is a pure n-isometry. We denote by
T(S) the C*-algebra generated by the commuting isometries {R.,, ..., R, }.
We simply say that 7(S) is the C*-algebra corresponding to the invariant
subspace S.

In this paper we aim to address three basic issues of pure n-isometries:
(i) analytic and canonical models for pure n-isometries, (i) an abstract classi-
fication of joint invariant subspaces for pure n-isometries, and (iii) the nature
of C*-algebra T(S) where S is a finite codimensional invariant subspace in
H?(D"). To that aim, for (i) and (ii), we consider the initial approach by
Berger, Coburn and Lebow [6] from a more modern point of view (due to
Bercovici, Douglas and Foias [5]) along with the technique of [20]. For (iii),
we will examine Seto’s approach [28] more closely from “subspace” approxi-
mation point of view.

We now briefly outline the setting and the main contributions of this
paper. Let £ be a Hilbert space, and let ¢ € Hgo(g)(ID)). We say that ¢
is an inner function if p(e)*p(e') = I¢ for almost every t (cf. page 196,
[21]). Recall that two n-tuples of commuting operators (A4y,...,A4,) on H
and (By,...,By,) on K are said to be unitarily equivalent if there exists a
unitary operator U : H — K such that UA; = B;U for alli =1,...,n. In [5],
motivated by Berger, Coburn and Lebow [6], Bercovici, Douglas and Foias
proved the following result: A pure n-isometry is unitarily equivalent to a
model pure n-isometry. The model pure n-isometries are defined as follows
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[5]: Consider a Hilbert space £, unitary operators {Uj,...,U,} on & and
orthogonal projections {Py,..., P,} on €. Let {®1,...,®,} C Hy.) (D) be
bounded B(&)-valued holomorphic functions (polynomials) on I, where

®;(2) = Uy(PH+2P) (2 €D),
and i = 1,...,n. Then the n-tuple of multiplication operators (Mg, , ..., Ms,)

on H g (D) is called a model pure n-isometry if the following conditions are
satisfied:

(a) UZU] = U]Ul for all i,j = 1, . Ny

(b) Ur---Uy = Ig;

(¢) P, +UP;U; =P; + UrPU; < Ig for all i # j; and

(d) Pi+UfPU+UfUS PsU U+ - -+UfUS - Uy PUp—y - - UgUy = I
It is easy to see that a model pure n-isometry is also a pure n-isometry (see
page 643 in [5]).

We refer to Bercovici, Douglas and Foias [3, 4, 5] and also [10], [12], [15],
[8], [9], [14], [17], [19], [23], [28] and [31, 32] for more on pure n-isometries,
n > 2, and related topics.

Our first main result, Theorem 2.1, states that a pure n-isometry is
unitarily equivalent to an explicit (and canonical) model pure n-isometry. In
other words, given a pure n-isometry (Vi,...,V,) on H, we explicitly solve
the above conditions (a)-(d) for some Hilbert space &, unitary operators
{U1,...,U,} on £ and orthogonal projections {P;,..., P,} on £ so that the
corresponding model pure n-isometry (Mg, , ..., Mg, ) is unitarily equivalent
to (V4,...,V,). This also gives a new proof of Bercovici, Douglas and Foias
theorem. On the one hand, our model pure n-isometry is explicit and canon-
ical. On the other hand, our proof is perhaps more computational than the
one in [5]. Another advantage of our approach is the proof of a list of use-
ful equalities related to commuting isometries, which can be useful in other
contexts.

Our second main result concerns a characterization of joint invariant
subspaces of model pure n-isometries. To be precise, let W be a Hilbert
space, and let (Mg,,..., Mg, ) be a model pure n-isometry on H3,(D). Let
S be a closed subspace of H3,(D). In Theorem 3.1, we prove that S is in-
variant for (Mg,,...,Mg,) on HZ,(D) if and only if there exist a Hilbert
space W,, an inner function © € H ?(’W*,W) (D) and a model pure n-isometry

(Mg, ,...,Mg,) on Hj, (D) such that

S = 0H;, (D),
and
$,0 =0V,
for all ¢ = 1,...,n. Moreover, the above representation is unique in an ap-

propriate sense (see the remark following Theorem 3.1).

The third and final result concerns C*-algebras corresponding to finite
codimensional invariant subspaces in H2(ID"). To be more specific, recall that
if n =1 and S and & are invariant subspaces of H?(D), then UT (S)U* =



4 Das, Debnath and Sarkar

T(S') for some unitary U : S — S’. Indeed, since S = 0H?*(D) for some
inner function § € H> (D), it follows, by Beurling theorem, that U := Mjy :
H?(D) — S is a unitary and hence U*T(S)U = T(H?*(D)). Clearly, the
general case follows from this special case. For invariant subspaces S and S’
of H%(D"), we say that 7(S) and T(S') are isomorphic as C*-algebras if
UT(S)U* = T(S’) holds for some unitary U : S — S’. It is then natural to
ask: If n > 1 and S and S’ are invariant subspaces of H?(D"), are 7 (S) and
T(S’) isomorphic as C*-algebras?

In the same paper [6], Berger, Coburn and Lebow asked whether 7(S) is
isomorphic to T(H?(D?)) for every finite codimensional invariant subspaces
S in H%(D?). This question was recently answered positively by Seto in [28].
Here we extend Seto’s answer from H?(ID?) to the general case H?(D"), n > 2.

The rest of this paper is organized as follows. In Section 2 we study
and review the analytic construction of pure n-isometries. We also examine a
(canonical) model pure n-isometry. A characterization of invariant subspaces
is given in Section 3. Finally, in Section 4, we prove that 7 (S) is isomorphic to
T(H?(D")) where S is a finite codimensional invariant subspaces in H?(D").

2. pure n-isometries and Model pure n-isometries

In this section, we first derive an explicit analytic representation of a pure
n-isometry. Then we propose a canonical model for pure n-isometries.

For motivation, let us recall that if X on H is a bounded linear operator,
then X is a unilateral shift operator if and only if X and M, on H]Q/V(X)(ID))
are unitarily equivalent. Here

W(X)=ker X* =H o XH,

is the wandering subspace for X (see Halmos [16]) and M, denotes the mul-
tiplication operator by the coordinate function z on H)%V(X)(ID)), that is,

(M, f)(w) = wf(w) for all f € Hav(X)(]D)) and w € D. Explicitly, if X is
a unilateral shift on #, then

H= & X"W(X).

m=0
Hence the natural map IIx : H — Hgv(x)(ID)) defined by
Ix (X™n) = 2™,
for all m > 0 and n € W(X), is a unitary operator and
IxX = M,IIx.

We call ITx the Wold-von Neumann decomposition of the shift X.
Now let H be a Hilbert space, and let (V1,...,V,) be a pure n-isometry
on H. Throughout this paper, we shall use the following notation:

Vi=T1Vj
Jj#i
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for all i =1,...,n. For simplicity, we also use the notation

W =Ww({),
and

W; =W(V;) and W; = W(V;),

foralli=1,...,n. Since V =1I"_; V; and V; = ViViforalli=1,...,n,itis
easy to see that

Wi7 Wi g W7
for all ¢ = 1,...,n. We denote by Py, and Py, the orthogonal projections
of W onto the subspaces W; and W, respectively.

Theorem 2.1. Let (V1,...,V,,) be a pure n-isometry on a Hilbert space H,
V =12",V;, and let W = W(V). Let Ily : H — H3,(D) be the Wold-von
Neumann decomposition of V. If V; = V*V and W, = W(V;) , then

Iy Vi = Mg Iy,
where
Di(2) = Us(Py, + 2P5,),
for all z € D, and
Ui = (PwVi + Vi )lw,

is a unitary operator on W and i = 1,...,n. In particular, (V1,...,V,) on
H and (Mg, ,...,Ms,) on HE, (D) are unitarily equivalent.

Proof. Let Ily : H — H%,(D) be the Wold-von Neumann decomposition of
V. Then

Iy VI, € {M.},
and hence there exists ®; € HLO;ZW)(D) [16, 21] such that II, V;II}, = Mg, or,
equivalently,

Uy Vi = Mo 11y,
for all i = 1,...,n. Note that Mg, on Hi,(D) is defined by

(Ms, f)(2) = ®i(2) f(2), (2.1)

for all f € HZ,(D), z € D and i = 1,...,n. We now proceed to compute the
bounded analytic functions {®;}? ;. Our method follows the construction in
[20]. In fact, a close variant of Theorem 2.1 below follows from Theorems
3.4 and 3.5 of [20]. We will only sketch the construction, highlighting the
essential ingredients for our present purpose. Let ¢ € {1,...,n}, z € D and
n € W. By an abuse of notation, we will also denote the constant function 7
in H},(D) corresponding to the vector n € W by n itself. Then from (2.1),
we have that

®;(2)n = (Ma,n)(2) = (v Vil n)(2).
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Now it follows from the definition of IIy that II},n = 5, and hence ®;(z)n =
(I Vin)(z). But Ly = Py, + ViV;*|w yields that Vin = Vi Py, n+ VV;*n and
thus

My Vin =1y (V; Py, n + VVin)

= Iy (ViPy,n) + v (VV;*n)

=TIy (Vi Py, n) + M.IIy (V;"n),
as Iy V = M.Ily. Now, since V*(V;(I — V;V;)V;*) = 0 and V*(V;*n) =0, it
follows that V;P;, n € W and V;*n € W. This implies that

Iy Vin = ViPy,n+ M.V,

and so ®;(z)n = V;Py,n + 2V n. Tt follows that ®;(z) = Vilyw, + Zf/i*‘\?iw,-
as W =V,W,; ®Wi,. Finally, W =W, & ViW; implies that

) ViW; W
Ui—{vi v, 0 }: o - @
0 Vilw, W VW,

is a unitary operator on W. Therefore
®;(2) = Us(Py, + 2P, ),

for all z € D. By definition of U;, it follows that U; = (ViPy, + Vi )|w. This
and

ViPy, = PwVi, (2.2)
yields U; = (PwVi + Vi ) w- n

We now study the coefficients of the one-variable polynomials in The-
orem 2.1 more closely and prove that the corresponding pure n-isometry
(Mg,,...,Ms,) on H3,(D) is a model pure n-isometry (see Section 1 for the
definition of model pure n-isometries).

Let (V4,...,V,) be a pure n-isometry on a Hilbert space H. Consider
the analytic representation (Mg, , ..., Ms,) on H3,(D) of (Vi,...,V,) as in
Theorem 2.1. First we prove that {U;}_; is a commutative family. Let p, q €
{1,...,n} and p # q. As W = ker V*, it follows that

VoVilw = 0.
Then using (2.2) we obtain
UpUyg = (PwVp + V) (PwVy + Vi ) lw
= (Pvapw‘/:] + V;Pqu + PvaV:]*”W
= (PWVpVy+ T1 ViPy +VpPy, Vi)lw

i#p,q
= (PwVpVy + (#l;{qVi*)(qu +VaPy, Vi Dlw

= (PwVpVe+ (11 Vi"))|w,
1#p,q
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as (Py, + VqPWp‘N/q*)\W = Iyy, and hence

UpUq = UygUy,
follows by symmetry. Now if I C {1,...,n}, then the same line of arguments
as above yields
O U; = (Py(O Vi) + (11 Vi")lw (2.3)
iel icl iele

In particular, since Py, V]yy = 0, we have that
n
The following lemma will be crucial in what follow.

Lemma 2.2. Fiz 1 <j<n.LetI C{l,...,n}, and let j ¢ I. Then

(I U;) Py, (L U)=C(_ T Vol T Vi)l — (I V(I V)b
ier\{jy ier\{j} iele " el
Proof. Since Py;, —IW PWVV |W,WehaveP~‘ —PWVV lw = VV*\W
By once again usmg the fact that V*|y = PWV|W = 0, and by (2.3), one
sees that

(I UF) Py, (1L U;) = [(IL V7)) + Pw( 11 VIViViIPw (I Vi) + (1T Vi)llw
el 7 4el iele el iele

= (I VOV Pw(IT Volw

iele\{5}
=( I V)VF(I=VV*)(ILVi)lw
iel\{j} il
=C 1 Vi 1 Vi)lw-(1m Vi)(1I V7
(ielc\{j} )(ielc\{j} Jw (z€I° )(1610 Jhw
This completes the proof of the lemma. [ ]
Theorem 2.3. If (V1,...,V,,) be an n-isometry on a Hilbert space H, and let
Uy, ..., U, be unitary operators as in Theorem 2.1. Then
(a) UpUy =U,U, forp,q=1,...n

)

(b) [T=1 Up = Iw,

(c) (PV%W + U;*Pjvj U;) = (PV%VJ_ + UJ*PV%Vin) <y (1<i<j<n),
)

(d) Py +UTPx Ui+UTUs Py, UsUs+ -+ (2] UF) P, (IG5 Ui) = D
Proof. By lemma 2.2 applied to I = {p} and j = ¢, where p,q € {1,...,n}
and p # ¢, we have

Uy P, Up = (11 V(T Vi) lw = VoW b

i#p,q 1#p,q
hence
(P, + Up P, Up) = PwVoVy b + (T V(IT V) = BV |
P q i#D,q 17#P,q
=(1I vy vy
(i;ﬁp,q )(i#pyq )|W

< Iy.
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Therefore by symmetry, we have
(P, + Uy P, Up) = (Py, + Uy Py, Ug) < Iw.
Finally, we let I; = {1,...,j—1} forall 1 < j <n and I,41 = {1,...,n}.
Then Lemma 2.2 implies that for 1 < j < n,
(I, V9P, (11 0 = (0 V(I V) = (1L V(I Ve,
K3 j 4 j i

Ie, i€l i€l iEls

This and PVLV1 = ViV;* | imply that

Pj + Ui P, Uy + Ut Us P UsUy + -+ + (11 U7)PE, (11 U;) = Dy,
This completes the proof of the theorem. -

As a corollary, we have:

Corollary 2.4. Let H be a Hilbert space and (V1,...,V,,) be a pure n-isometry
onH. Let (Mg, ..., Ms,) be the pure n-isometry as constructed in Theorem
2.1, and let (My,,...,My,) on HZ (D), for some Hilbert space W, unitary
operators {U; }1, and orthogonal pmjectzons {P}_, on' W, be a model pure
n-isometry. Then:
(a) (Ma,,...,Ms,) is a model pure n-isometry.
(b) (Vi,..., V) and (Mg,,..., Mg, ) are unitarily equivalent.
() Vi,..., Vo) and (My,, ..., My,) are unitarily equivalent if and only if
there exists a unitary opemtor W W = W such that WU; = U;W and
WP, = PWforallz—l,...,

Proof. Parts (a) and (b) follows directly from the previous theorem. The
third part is easy and readily follows from Theorem 4.1 in [20] or Theorem
2.9 in [5]. m

Combining Corollary 2.4 with Theorem 2.3, we have the following char-
acterization of commutative isometric factors of shift operators.

Corollary 2.5. Let £ be a Hilbert space, and let {®;}i_y C Hpe) (D) be a
commutative family of isometric multipliers. Then

n
M, =11 M(Dj;
i=1
or, equivalently
n
II ®(z)=2z2lg, (2€D)
i=1
if and only if, up to unitary equivalence, (Mg,,...,Ms, ) is a model pure
n-isometry.

In other words, zI¢ factors as n commuting isometric multipliers {®;}*_,
in Hgey(D) if and only if there exist unitary operators {U;};_; on & and
orthogonal projections {P;}?_; on & satisfying the propertles ( ) - (d) in
Theorem 2.3 such that ®;(z) = U;(P- + 2P;) for all i = 1,.
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3. Joint Invariant Subspaces

Let W be a Hilbert space. Let (Msg,, ..., Ms,) be a model pure n-isometry
on H},(D), and let S be a closed invariant subspace for (Mg, , ..., Ms,) on
H3,(D), that is

Mg, S C S,
for all i = 1,...,n. Then (Mg,|s,..., Ms,|s) is an n-tuple of commuting
isometries on S. Clearly

and since .
H M‘:I)j = MZ’
j=1

it follows that

(I My,)ls = M-|s, (3.1)

that is, S is a invariant subspace for M, on H?,V(]D)) Moreover, since M., |s is
a unilateral shift on S, the tuple (Mg, |s, ..., Mg, |s) is a pure n-isometry on
S. Then by Corollary 2.4 there is a model pure n-isometry (My,,..., My,)
on H12/V(D)’ for some Hilbert space W, such that (Mg, |s, ..., Ms,|s) and
(Mg,,...,My,) are unitarily equivalent. The main purpose of this section is
to describe the invariant subspaces S in terms of the model pure n-isometry
(Mg,,...,My,).

As a motivational example, consider the classical n = 1 case. Here the
model pure 1-isometry is the multiplication operator M, on H)%v (D) for some
Hilbert space W. Let S be a closed subspace of H%V (D). Then by the Beurling
[7], Lax [18] and Halmos [16] theorem (or see page 239, Theorem 2.1 in [13]),
S is invariant for M, if and only if there exist a Hilbert space W, and an
inner function © € Hyp,, ) (D) such that

S = 6Hy, (D).
Moreover, in this case, if we set
V= Mz‘87

then W, =S & 28 and V on § and M, on H}, (D) are unitarily equivalent.
This follows directly from the above representation of S. Indeed, it follows
that X = Mg : H}, (D) — ranMg = S is a unitary operator and

XM, =VX.
Now, we proceed with the general case.
Theorem 3.1. Let n > 1. Let W be a Hilbert space, (Ms,,...,Ms,) be a
model pure n-isometry on Hi, (D), and let S be a closed subspace of HE, (D).
Then S is invariant for (Mg, , ..., Ms,) on H},(D) if and only if there exist
a Hilbert space Wy, an inner function © € HE?W* w) (D) and a model pure
n-isometry (Mg, , ..., Mg, ) on H}, (D) such that

S = OH}, (D),
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and
$,0 =0Y,,
forallj=1,...,n.

Proof. Let (Mg,,...,Ms,) be a model pure n-isometry on Hg,(D), and let
S be a closed invariant subspace for (Ms,, ..., Ms,) on H3, (D). Let

W,=86:2S.

Since S is an invariant subspace for M, on HZ,(D) (see Equation (3.1)),
by Beurling, Lax and Halmos theorem, there exists an inner function © €
Hgy. w) (D) such that S can be represented as
S =0H;, (D),
If 1 <j <n, then
®,5CS,

implies that ran (Mg, Me) C ran Mg, and so by Douglas’s range and inclu-
sion theorem [11]

Mg, Mo = MoMy,,
for some V; € Hgj,,, (D). Note that Mg, Mg is an isometry and [|©W; f|| =

BW.)
| @, f|| for each f € H3, (D). But then ||Mg, f|| = ||f| implies that My, is

an isometry, that is, ¥; is an inner function, and hence
My, = MgMe, Mo,
forall j=1,...,n. So
n
1 My, = (M5Me,Me) -~ (Mo Ms, Me).

Now Pran Mo = MeMg and <I>j®H§V* (D) C @H%V* (D) implies that
Mo Mg My, Mo = Mg, Mo,
for all j =1,...,n. Consequently

ﬁl My, = Mg( ﬁl Mg, )M = MM, Mo = Mg Mo M, = M.,
J= J=

that is, (Mg, , ..., My,) is a pure n-isometry on H3, (D). In view of Corol-
lary 2.5, this also implies that the tuple (Mg,,..., My,) is a model pure
n-isometry. This completes the proof of the theorem. [ |

The representation of S is unique in the following sense: if there exist

a Hilbert space W, an inner multiplier © € H EC()W w) (D) and a model pure
Lo My ) on HZ (D) such that S = OHZ (D) and ;0 =
OV, for all i = 1,...,n, then there exists a unitary 7 : W, — W such that

O = 6Or,

n-isometry (Mg,

and
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In other words, the model pure n-isometries (Mg, ,..., My ) on H%}(]D)) and
(Mg,,...,Mg,) on H}, (D) are unitary equivalent (under the same unitary
7). Indeed, the existence of the unitary 7 along with the first equality follows
from the uniqueness of the Beurling, Lax and Halmos theorem (cf. page 239,
Theorem 2.1 in [13]). For the second equality, observe that (see the uniqueness
part in [19])

éT‘I’i = 6\111 = ‘I%@ = (I)iéT,

that is (:‘)T\I’i = é\ifﬂ', and so

foralli=1,...,n.

It is curious to note that the content of Theorem 3.1 is related to the
question [1] and its answer [26] on the classifications of invariant subspaces
of I'-isometries. A similar result also holds for invariant subspaces for the
multiplication operator tuple on the Hardy space over the unit polydisc in
C™ (see [19]).

Our approach to pure n-isometries has other applications to n-tuples,
n > 2, of commuting contractions (cf. see [9]) that we will explore in a future

paper.

4. (*-algebras generated by commuting isometries

In this section, we extend Seto’s result [28] on isomorphic C*-algebras of
invariant subspaces of finite codimension in H?(ID?) to that in H?(D"), n > 2.
Given a Hilbert space H, the set of all compact operators from H to itself is
denoted by K (H). Recall that, for a closed subspace S C H?(D"), we say that
S is an invariant subspace of H2(D") if M,.S C S for all i = 1,...,n. Also
recall that in the case of an invariant subspace S of H2(D"), (R.,,...,R.,)
is an n-isometry on S where

R,, =M, |s € B(S) (i=1,...,n).
Lemma 4.1. If S is an invariant subspace of finite codimension in H?*(D"),
then K(S) C T(S).
Proof. Since T(S) is an irreducible C*-algebra (cf. [28], Proposition 2.2), it
is enough to prove that 7 (S) contains a non-zero compact operator. As

‘1_11(1H2(Dn) — M., M} ) = Pc € T(H*(D")),
we are done when S = H?(D"). Let us now suppose that S is a proper
subspace of H?(D"). For arbitrary 1 <i < j < n, we have
[R;,sz] = PSM;MZJ-LS‘ — PSszPSM;LS‘ = PSszPSlM:JS S K(S),

as St is finite dimensional. It remains for us to prove that [R:,,R.,] # 0

for some 1 < i < j < n. If not, then § is a proper doubly commuting
invariant subspace with finite codimension. As a result, we would have § =
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©H?(D") for some inner function ¢ € H°(D") ([27]) and hence S has infinite
codimension (see the corollary in page 969, [2]), a contradiction. ]

In what follows, a finite rank operator on a Hilbert space will be denoted
by F (without referring to the ambient Hilbert space). Also, if M is an
invariant subspaces of H?(D"), then we set

R = M| € B(M),
and simply write R,,, ¢ =1,...,n, when M is clear from the context.
Lemma 4.2. Suppose M1 and My are invariant subspaces of H? (™), M; C
My and dim(My & M) < co. Then T(M1) = {Pm,T|m, : T € T(M2)}.

Moreover, if £ is a closed subspace of My and P € T(My), then PM* €
T (My).

Proof. Note that Rﬁi’b M, = Rﬁi’ll and so, by taking adjoint, we have
P, (RY2)" | iy = (R,
for all ¢ = 1,...,n. Then Rﬁi’ll(R?j/ll)* = PMlRﬁfZPAAjf(RﬁfZ)ﬂMI, i =
1,...,n. This yields
REM(RED)" = Py RE In, (R'2)" |, — Paay RE2 P2 p, (RE) L,
= PM1R?:12(R£7/12)*|M1 + Fv

for all 4,7 = 1,...,n, as dim(Ms © M;) < oco. Similarly (Rﬁ;‘l)*Ré‘i’“ =
PMl(Rﬁ;‘2)*R£f2|M1 + F foralli,5 =1,...,n. Now let T € T(M;) be a
finite word formed from the symbols

{RM (RM)* ri=1,...,n},
and let Ty € T(M3) be the same word but formed from the corresponding
symbols in

(R} (R})*1i=1,...,n}.
Then T7 = Paq, To|m, +F. Since both T(My) and {Pp, T, : T € T(Ma)}
are closed subspaces of B(M;) and both contain all the compact operators

in B(M,), it follows that T(M1) = {Pm,T|m, : T € T(Maz)}. The second
assertion now clearly follows from the first one. [ ]

A thorough understanding of co-doubly commuting invariant subspaces
of finite codimension is important to analyze C*-algebras of invariant sub-
spaces of finite codimension in H2(D"). If § is a closed invariant subspace of
H?(D), then we know that S = §H?(D) for some inner function § € H>(D).
To simplify notations, for a given inner function § € H>°(D), we denote

Sp = 0H*(D), and Qp = H*(D)c 0H?*(D).

Also, given an inner function 6; € H>* (D), 1 < ¢ < n, denote by My, the
multiplication operator

(Mg, f)(z1,. .-y 2n) = 0i(2) f (21, .- -, 2n)
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for all f € H?(D") and (z1,...,2,) € D". Recall now that an invariant
subspace S of H?(D") is said to be co-doubly commuting [25] if S = Ss
where
So = (Qtﬁl ®"'®Q@n)lﬂ (4'1)
and ¢;, i = 1,...,n, is either inner or the zero function. We warn the reader
that the suffix ® in Sg refers to the finite Blaschke products {¢;}7 ;. Here,
in view of (4.1) (or see [25]), we have
(M@pM;p)(MWqM;q) = (MWqM;q)(MQOpM;p)?

for all p,g=1,...,n, and

Ps, = IHQ(]D)n) — iljl(IHz(Dn,) — MLPLM;) (42)

It also follows that
Sp = My, H*(D™) + -+ + M, H*(D").

Therefore, S has finite codimension if and only if ¢; is a finite Blashcke
product for all ¢ = 1,...,n. Moreover, it can be proved following the same
line of argument as Lemma 3.1 in [28] that if S is an invariant subspace
of H?(D") then S is of finite codimension if and only if there exist finite
Blaschke products ¢, ..., ¢, such that

S C 8.
Given Sg as in (4.1) and 1 < i < j < n, we define Qgli, j] by
Qi j] = Qp, ® Quyy @+ ® Qp, C HA(DI™H),
Lemma 4.3. Let {p;}" be finite Blaschke products. If
Ly = Qs[l,n—1]" @ H*D), Ly = Qa[l,n—1]®S,,,

L3 = 0Qs[l,n—1]® H*D),Ls = Qp[l,n — 1] ® ¢, Sy,

and
'C/Ql = Q‘P[l?n - 1] ® (PanOnv

then Pg,, Pz, Pz, and Py are in T(H?(D")) and P2?, Pfj,Pf,j and Pf,j
are in T (Sa).
Proof. Clearly Sp = L1 @® Lo, H*(D") = £, & L3 and Lo = L) & LY. By
virtue of Lemma 4.2, we only prove the lemma for H?(D"). Since £ is
finite-dimensional, it follows, by Lemma 4.1, that P,y € T(H?*(D")). Since
;i € H>°(D) is a finite Blaschke product, it follows that ; is holomorphic in
an open set containing the closure of the disc, and hence M, = ¢;(M.,) €
T(H?*(D")) for all i = 1,...,n. Then, by (4.2), Ps, € T(H?*({[D")). In view of
Ss = L1 @ Lo, it is then enough to prove only that P,, € T(H?*(D")). This
readily follows from the equality

n—1
S

This completes the proof of the lemma. [ ]
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In particular, 7(Sg) contains a wealth of orthogonal projections. This
leads to some further observations concerning the C*-algebra T (Sg). First,
given Sg as in (4.1), we consider the unitary operator U : H?(D") — Ss
defined by

L4 L
U:[Iél MO }:@—wa.
Pn £3 £2

Then U = Pg, + M, P, and U* = ng’ + M7 ng. We have the following
result:

Theorem 4.4. If {¢;}1, are finite Blaschke products, then
UT(Se)U = T (H*(D")).
In particular, T(Ss) and T(H?(D")) are unitarily equivalent.
Proof. A simple computation first confirms that
U*R., U =M, cT(H*D")),
that is
M, €U*T(Se)U and R, € UT(H*(D"))U*.
Next, let i =1,...,n— 1. Then
R.,U = M, Pr, + R.,M,, P, = M. P, + M. M,,
as My, L3 = Lo C Sp, and so
U*R.,U = (PS* + M}, P2*)(M. Pz, + M., M,, Pr,)
= M., Pc, + Pc,M. My, Pcy + M, Pr,M, M, Pr,,

as M., L1 C Ly and M,, M, L3 = M, L5 C Sp. Then U*R,,U € T(H?(D"))

P£37

foral i =1,...,n, by Lemma 4.3. In particular
U*T (Se)U C T(H?*(D")).
On the other hand, since L5 = £, ® LY and LY is finite dimensional, it follows

that Pr, = Pgy + F, and thus U* = U* |z, + U*[z, + F. Now UM, U*|¢, =
UM.,, |z, = M,,|z, as z;£1 C L7 and hence

UM, Uz, = R,

L1
and on the other hand
UM, Uy = UM, Mg |zy) = U(M,Ps, Mg )|z, = U(R:, R ey
where R, = M, |s,. Moreover, since L3 = L5 ® Sz and Sz is finite dimen-
sional, it follows that P, = Pz, + F', and thus
UM, U" |z, = Pr, R, Ry, |y + My, PryR., R, |y
= PﬁleiR;Jgé + M«pnPﬁ2R2iR:;n|£’2 + F

= P2*R.R;, |z, + Ry PP R. R}, | + F,

and hence
- Sa Se * pSe Se * pSo
UMZ'iU - Rzi Pﬁl + PL1 Rz'i Rlpn P,C'Q + Rﬁan Pﬁz Rzi R‘Pn P[,'2 + F.
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By Lemma 4.3, it follows then that UM,,U* € T(Sg) and so
UT(H*(D")U* C T(Sa).

Therefore, the conclusion follows from the fact that U*R, U = M, €

T(H?(D")). [ |

Now let § be an invariant subspace of finite codimension, and let Sp C
S, asin (4.1), for some finite Blashcke products {¢; }_ ;. We proceed to prove
that 7(S) is unitarily equivalent to 7 (Sg). Let

m := dim(S © Ss).
Observe that
PS([, = ]\4¥JIZ\4‘:;1 + (IHZ(]D)n) — MgolM;l)(IH?(]D)") — iEQ(IHZ(Dn) - M@zM;L))’

and so
Sp = (s% ® H2(1D>"—1)) @ (Q% ® Q¢[2,n]L).

Lemma 4.5. PS

S
S¢1®H2(D"*1)’Pgm@gq,[z,nﬁ €T(S) and

S. Sa
Ps omron-1) Pol goupms € T(Se)-

Proof. First one observes that, by virtue of Lemma 4.2, it is enough to prove
the result for S. Note that M, S C S. Define R,, € B(S) by R,, = My, |s.
Then Ry, = ¢1(M.,)|s € T(S) and

Py s = RVJIR;I € T(S)

®1

Now on the one hand
Spr ® HAD" ™) = My, HX(D") = M, S & (M, HX(D") & M, S )

also, M, H?(D") & M,, S = M,,(H*(D") & S) is finite dimensional, and
hence we conclude Ps, g m2pn-1) € T(S). This along with dim (S©68s) < 0o
and the decomposition

S = (S, @ H*(D" 1)) @ (Qp, ® Qu2,n]7) ® (S © Sa),
implies that Py g0, p2.n+ € T(S). This completes the proof of the lemma.
|

For simplicity, let us introduce some more notation. Given ¢ € N, let us
denote

C*"=C®---®CC H*DY).

Note that C®9 is the one-dimensional subspace consisting of the constant
functions in H?(DY). Recalling dim(S © Sp) = m(< o0), we consider the
orthogonal decomposition of Sy, ® H*(D" 1) as:

S,y @H*D"H =508 oS,
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where
S1 = (p1Q.m) ® C2("~2) @ H2(D)
Sy = Symy, @ CO=2) @ H2(D
S3=38,, ® (C®=2)L o H2(D).

Finally, we define
L=5S&S:3d <Q<p1 ® Q<I>[2an]l>~
With this notation we have
So =851 DL,
and
S=(SeS)eS1 0L
Lemma 4.6. P§ € T7(S) and P;‘P € T(Ss) foralli=1,2,3.

Proof. In view of Lemma 4.2, it is enough to prove that P«’;“Si eT(S),i=
1,2, 3. Note that ‘PSH(;1 @Ce(n-)0H2(D) € T(S) as

PS¢1®C®("*2)®H2(D) == PS¢1®H2(]D)"_1)(IS - X)PS¢1®H2(DW,—1)’
where

X = > (-1)¥"'R. - R., Ri ---R:

Zi 24y Zig "
2<i <<y <n—1

Therefore

PSa = PS¢1®H2(D"*1) — PS¢1®C®("*2)®H2(D) S T(S)
Finally, since Ps, = RZPS¢1®C®(”—2>®H2(D)R;T and S$1 9S8, = S¢1 ®C®(n72)®
H?(D), it follows that Ps, and Ps, are in 7(S). [ |

Before we proceed to the unitary equivalence of the C*-algebras T (S)
and 7 (Sg) we note that
Y1 sz = Span {()Ola P12, ..., gplzm_l}~

Theorem 4.7. If S is a finite co-dimensional invariant subspace of H?(D")
and S¢ C S for some finite Blaschke products {¢;}1"_ 1, then T(S) and T (So)
are unitarily equivalent.

Proof. By noting that H?(D) = C @ S., we decompose S; as §; = F; & M,
where

Fi=(01Qom) @C2 D and M, = (91Q.m) @ C2" D 0 8,

Taking into consideration dimF; = dim (S © Sg), we have a unitary V :
F1 — 8§ 6 8o, and then, using the decompositions

Se=F1 M1 DL.

and

S=(S6Ss)dS1 8L,
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we see that

vV o0 0
U=10 M: O0|:FioMOL—(SOSs)®S GL,
0 0 I

defines a unitary from Sg to S. We claim that U*T(S)U = T (Sg). First
we prove that U*T(S)U C T(Sg). Since dimF; < oo, it suffices to prove
that U*RS Ulrmyac € T(Se) for all i =1, ,n. Observe first that UM; =
M:an = 81 g Sq>, Mznsl g 81 and Mznﬁ g L. Since

U*RS Ulpmoe = UM, M7 [, + M., |,
and U* M., M* |, = M2 M? |p, = M2 Ps, M7 | a1, it follows that

UR Ulsmier = (R (R3!)" PR, + B3P € T(Sa).

Now for 1 < i < n, we have

U*RSU|pmyor = UM, M | pmy + UM, |,

where U* M, M} |y, = M, M} |m, as 2:51 € S3 € L. On the other hand,
since z;S2 C S3 we have z;£ C L and hence U*M,, |, = M., |, whence

U*RS Ulpyoc = RS (RS™)*PLE + RSP PR € T(Ss).

Now we decompose M7 as My =K1 @ K1 where

Ki=(p1Q.m1)@CP" D28, and K= (pz"'C)C?"2gs,.
Then

U*RS Ulm, = UM, M7 |ic,+U* M., M? |g, = M., M. M7 |ic,+M. M} |¢
as M, M} Ky C & and MZlenlél C 8s. On the other hand, U*RflU|52@53 =

M, |s,os, as M, (S2 @ S3) C Se @ S3 C L, and finally, by denoting N' =
Q. ® Qo [2,n]", we have
U*RSU|n =U*M,,|xy = U*(Is — P§)M.,|n + U*PS M., |n-

Then &8 = (S© 8s) ® L and M, N C Sg implies that

U*RS Uy = P2 M., |y + Mznpgf)le Ins
and so

U*RS Ulmec = REPRE (REP)" PP + RSP (REY)"PE* + REM PSlys,
+ PE*RS* PP + RS*PS*RS*PR® + F.

This implies that U*RS U € T(Sp), and therefore U*T(S)U C T(Sp). We
now proceed to prove the reverse inclusion UT (Sg)U* € T(S). Since dim(S©
Sp) < 00, it is enough to prove that URS*U*|s,qz € T(S) foralli =1,...,n.
Once again, note that U*S; = My C Sg, z, M1 C My, 2,51 € &1 and
zn L C L. Hence

URZ*U*|s,ec = UM |s, + UM, | = M., |s, + M., |c,
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that is
URS*U*|s,0c = RS PS.op € T(S).
Now, for fixed 1 < i < n, we have z; M1 C S3 and z,£ C L. Then
URS*U*|s,0c = UM., M., |s, + UM.,|¢
=M., M., |s, +M.,|c
= RS RS PS + RSP € T(S).

Finally, we consider the decomposition S§; = & & S} where
S) = (1Q,m-1)®C" DR H*(D) and S} = (912" 'C)®CE "D @ H*(D).
Then

S
(]]%ZII)UWLS1 = UleMzn S +UM21MZ” Sy
= M;"leMzn|5{ +M21Mzn|8{’
=M., |S{ + leMzn|8{’v

as 212,81 € My and 212,87 C Ss. Moreover
URff U*‘S2€B53 = UMZl |32€BSS = MZ1 ‘32@337
as 21(Sy @ S3) C Sz b S3. From the definition of N, it follows that
URS*U* |y = UPSE M.,y | + Uls, — P2 ) M., |,

this in turn implies that

URSYU* |y = M7 Py, M., |y + PZ M., |y + F,
as Sp O M1 = F; ® L and F; is finite dimensional. Therefore

URSU* |s,ec = R3PS, + RS RS PSy + R2, P30,
+ (RS )" Py, M., Py + PERS Py + F € T(S).

This completes the proof of the theorem. [ |

On combining Theorem 4.4 and Theorem 4.7, we have the following:

Theorem 4.8. If S is a finite co-dimensional invariant subspace of H?(D"),
then T(S) and T (H?(D")) are unitarily equivalent.

In the case n = 2, the proof of the above result is considerably simpler
and direct than the one by Seto [28] (for instance, if n = 2, then 1 < i <n
case does not appear in the proof of Theorem 4.7).
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